When a>0 When a>0 ## INTRODUCTION TO THE APPEARANCE OF FUNCTIONS 1ST Degree Equations: Equations in the Form y = ax + b 4= mx+b When a < 0 end behavior Number of Turns: 2nd Degree Equations: Equations in the Form $y = ax^2 + bx + c$ 3rd Degree Equations: Equations in the Form $y = ax^3 + bx^2 + cx + d$ 4th Degree Equations: Equations in the Form $y = ax^4 + bx^3 + cx^2 + dx + e$ Graphs of polynomials in the form $f(x) = x^n$: - right end up, left end down (a) End Behavior for odd functions (a>0): - (b) End Behavior for even functions (a>0): right endup, left endup What if the leading coefficient is negative (less than zero)? - (c) End Behavior for odd functions (a<0): right end down, left up (d) End Behavior for even functions (a<0): right down, left down - 2. Without a calculator, answer the following questions: - (a) Given $f(x) = -x^2 + 2x 3$, describe the end behavior: right down, left down - (b) Given $g(x) = x^5 + x$, describe the end behavior: right up, left down - 3. Determine if each graph represents an odd degree function or an even degree function and determine the degree of the function: Even or Odd: Even Number of Turns: 3 Degree of the Polynomial: Even or Odd: Odd Number of Turns: 4 Polynomial: 5 Even or Odd: Even Number of Turns: 3 Degree of the Polynomial: Even or Odd: odd Number of Turns: 6 Degree of the Polynomial: 4. Remember, where the graph crosses the x-axis is called a **2 ero** of a function. (Also called, x-intercepts, solutions, or roots). The number of solutions is ALWAYS equal to the degree of the polynomial. Polynomials can have IMAGINARY solutions. Imaginary solutions always come in pairs (conjugates like 3+2i, 3-2i) - 5. Determine the number of imaginary solutions that each of the following polynomials must have. - (a) A 3^{rd} degree polynomial that has 1 real solution must have ____2 imaginary solutions. 3 1 = 2 - (b) An 8th degree polynomial that has 4 real solutions must have _____ imaginary solutions. - (c) A 2nd degree polynomial that has no real solutions must have _____ imaginary solutions. - (d) A 98th degree polynomial that has 98 real solutions must have ____O__ imaginary solutions. - 6. The following represents a 2 degree equation and therefore must have 2 solutions. Because the graph comes down and "bounces" off the x-axis, we call this a Double Root . This will "count" as two solutions. 7. Answer the questions about the following polynomials: | | Graph | Leftmost y
values
(turns up or
turns down) | Rightmost y
values
(turns up or
turns down) | Even or
Odd
Degree | a>0
or
a<0 | Degree
of
Function | Total #
of
Solutions | # of Real
Solutions | # of
Double
Roots | # of
Imaginary
Solutions | |-----|---|---|--|--------------------------|------------------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------| | (a) | | down | ир | odd | a>o | 3 | 3 | 1 | o | 2 | | (b) | | | | | | | | | | | | (c) | , , | | | | | | | | | | | (d) | | | | | | | | | | | | (d) | · / · · · · · · · · · · · · · · · · · · | | | | | | | | | | Algebra Two Name: _____ Date: _____ ## HOMEWORK - INTRODUCTION TO THE APPEARANCE OF FUNCTIONS | | Graph | Leftmost y
values
(turns up or
turns down) | Rightmost y
values
(turns up or
turns down) | Even or
Odd
Degree | a>0
or
a<0 | Degree
of
Function | Total #
of
Solutions | # of Real
Solutions | # of
Double
Roots | # of
Imaginary
Solutions | |----|-------|---|--|--------------------------|------------------|--------------------------|----------------------------|------------------------|-------------------------|--------------------------------| | 1. | | | | | | | | | | | | 2. | | | | | | | | | | | - Without a calculator, answer the following questions: 7. Given $f(x) = x^3 + 2x^2 3x$, describe the end behavior: - 8. Given $g(x) = -x^4 + 4x$, describe the end behavior: