When a>0

When a>0

INTRODUCTION TO THE APPEARANCE OF FUNCTIONS

1ST Degree Equations: Equations in the Form y = ax + b

4= mx+b When a < 0

end behavior

Number of Turns:

2nd Degree Equations: Equations in the Form $y = ax^2 + bx + c$

3rd Degree Equations: Equations in the Form $y = ax^3 + bx^2 + cx + d$

4th Degree Equations: Equations in the Form $y = ax^4 + bx^3 + cx^2 + dx + e$

Graphs of polynomials in the form $f(x) = x^n$:

- right end up, left end down (a) End Behavior for odd functions (a>0):
- (b) End Behavior for even functions (a>0): right endup, left endup What if the leading coefficient is negative (less than zero)?
 - (c) End Behavior for odd functions (a<0): right end down, left up
 (d) End Behavior for even functions (a<0): right down, left down

- 2. Without a calculator, answer the following questions:
- (a) Given $f(x) = -x^2 + 2x 3$, describe the end behavior: right down, left down
- (b) Given $g(x) = x^5 + x$, describe the end behavior: right up, left down
- 3. Determine if each graph represents an odd degree function or an even degree function and determine the degree of the function:

Even or Odd: Even

Number of Turns: 3

Degree of the Polynomial:

Even or Odd: Odd

Number of Turns: 4

Polynomial: 5

Even or Odd: Even
Number of Turns: 3

Degree of the

Polynomial:

Even or Odd: odd

Number of Turns: 6

Degree of the Polynomial:

4. Remember, where the graph crosses the x-axis is called a **2 ero** of a function. (Also called, x-intercepts, solutions, or roots).

The number of solutions is ALWAYS equal to the degree of the polynomial.

Polynomials can have IMAGINARY solutions. Imaginary solutions always come in pairs (conjugates like 3+2i, 3-2i)

- 5. Determine the number of imaginary solutions that each of the following polynomials must have.
- (a) A 3^{rd} degree polynomial that has 1 real solution must have ____2 imaginary solutions. 3 1 = 2
- (b) An 8th degree polynomial that has 4 real solutions must have _____ imaginary solutions.
- (c) A 2nd degree polynomial that has no real solutions must have _____ imaginary solutions.
- (d) A 98th degree polynomial that has 98 real solutions must have ____O__ imaginary solutions.
- 6. The following represents a 2 degree equation and therefore must have 2 solutions.

Because the graph comes down and "bounces" off the x-axis, we call this a

Double Root . This will "count" as two solutions.

7. Answer the questions about the following polynomials:

	Graph	Leftmost y values (turns up or turns down)	Rightmost y values (turns up or turns down)	Even or Odd Degree	a>0 or a<0	Degree of Function	Total # of Solutions	# of Real Solutions	# of Double Roots	# of Imaginary Solutions
(a)		down	ир	odd	a>o	3	3	1	o	2
(b)										
(c)	, ,									
(d)										
(d)	· / · · · · · · · · · · · · · · · · · ·									

Algebra Two Name: _____ Date: _____

HOMEWORK - INTRODUCTION TO THE APPEARANCE OF FUNCTIONS

	Graph	Leftmost y values (turns up or turns down)	Rightmost y values (turns up or turns down)	Even or Odd Degree	a>0 or a<0	Degree of Function	Total # of Solutions	# of Real Solutions	# of Double Roots	# of Imaginary Solutions
1.										
2.										

- Without a calculator, answer the following questions: 7. Given $f(x) = x^3 + 2x^2 3x$, describe the end behavior:
- 8. Given $g(x) = -x^4 + 4x$, describe the end behavior: